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Abstract. The purpose of this paper is to present some results on linear programming in measure
spaces (LPM). We prove that, under certain conditions, the optimal value of an LPM is equal to the
optimal value of the dual problem (DLPM). We also present two algorithms for solving various LPM
problems and prove the convergence properties of these algorithms.
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1. Introduction

Let �E�F� and �Z�W� be two dual pairs of ordered vector spaces. Let E+ and Z+
be the positive cones for E and Z, respectively; and E∗

+ and Z∗
+ be the polar cones

of E+ and Z+, respectively. Given b∗ ∈F , c∈Z, and a linear map A�E→Z,
then the linear programming problem and its dual problem can be formulated as
follows:

(LP): minimize �x�b∗�
subject to Ax−c∈Z+ and x∈E+;

(DLP): maximize �c�y∗�
subject to b∗−A∗y∗ ∈E∗

+ and y∗ ∈Z∗
+ ,

where A∗ represents the adjoint mapping of A. If we assume that A is continuous
for the weak topologies on E and Z (w.r.t. F andW , resp.), then (DLP) is the dual
problem of (LP) in Kretschmer’s sense ([7]).
We now discuss this kind of linear programming in measure spaces. In [2],

Glashoff and Gustafson (1982) discussed linear semi–infinite programming (LSIP)
in which E=F �=�n, Z=W �=�T (the linear space of real valued functions
on T which vanish everywhere except on a finite subset), E+ �=�n

+�Z+ �=�T
+.

The theory and algorithms for linear semi–infinite programming are discussed in
[2, 4, 12, 15]. A great deal of theory and algorithms can be also found in Goberna
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and López (1998) [3]. The generalized capacity problem is an infinite dimensional
linear programming problem, which extends the linear semi-infinite programming
problem from the variable space �n to variable space of the regular Borel meas-
ure space. In [8] Lai and Wu (1992) investigate the generalized capacity problem
(GCAP), in which E and W are both spaces of regular Borel measures and F and
Z are both spaces of continuous real valued functions. Kellerer (1988) [6] explores
linear programming in measure spaces by using a theoretical model. He considers
linear programming problems for measure spaces of the form:

(P′):minimize
∫
X
hd�

subject to �p∗�� inM�Y �,
where p∗ maps �∈M+�X� toM�Y �,

and

(D′):maximize
∫
Y
gd�

subject to all measurable functions g�0 on Y
and pg�h, where p maps the set of nonnegative
measurable functions on Y to measurable functions
on X.

Here X and Y are topological spaces endowed with their Borel �-algebras, and
M+�X� denotes the set of nonnegative measures inM�X�. Lai andWu (1994) [10]
discuss LPM and DLPM (defined in the next section) with constraint inequalities
on the relationships of measures to measures. They prove that under certain condi-
tions the LPM problem can be reformulated as a general capacity problem as well
as a linear semi–infinite programming problem. [10] developes a special type of
algorithm when certain conditions are added to an LPM. In the present paper, we
develop the dual problem DLPM for LPM and discuss the relationship between the
optimal value V (LPM) of an LPM and the optimal value V (DLPM) of a DLPM.
In Section 3, we develop algorithms for different types of LPM problems. These
algorithms are generalized from the algorithm in [10]. We prove the convergence
properties of these algorithms. Finally, we implement these algorithms and provide
some examples in Section 4.

2. Conditions for the absence of an LPM duality gap

Now we formulate a linear programming problem for measure spaces (LPM). As
in [10], X and Y are compact Hausdorff spaces, C�X� andM�X� are, respectively,
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spaces of continuous real valued functions and regular Borel measures on X. We
denote the totality of non–negative Borel measures on X asM+�X�, and the subset
of C�X� consisting of non–negative functions as C+�X�. Given ���∗ ∈M�Y �,
�∈C�X×Y � and h∈C�X�, we consider the linear transformation A�M�X�→
M�Y � defined by

A��B��=
∫
B
����y�d�∗�y� for anyB∈��Y �and�∈M�X�� (1)

where ��Y � stands for the Borel field of Y , and

����y� �=
∫
X
��x�y�d��x�∈C�Y �� (2)

Also, we define the linear functional �·�·�1 onM�X�×C�X� as follows:

���f �1 �=
∫
X
f �x�d��x� for all �∈M�X� and f ∈C�X��

Then we know from [10] that LPM can be formulated as follows:

LPM:minimize ���h�1
subject to �∈M+�X�,
and A���.

Moreover, we define the linear functional �·�·�2 onM�Y �×C�Y � as follows:

���g�2 �=
∫
Y
g�y�d��y� for all �∈M�Y � and g∈C�Y ��

Then by applying Fubini Theorem, we have

�A��g�2 =
∫
Y
g�y�

∫
X
��x�y�d��x�d�∗�y�

=
∫
X

∫
Y
g�y���x�y�d�∗�y�d��x�

= ���A∗g�1� (3)

where A∗g�·� �=∫
Y
g�y���·�y�d�∗�y� is the adjoint operator of A. It is clear that

M+�X� is a ��M�X��C�X��-closed convex cone, and that M+�Y � is a ��M�Y �,
C�Y ��-closed convex cone. From Kretschmer (1961)[7], we know that LPM has
an associated dual problem:
DLPM:

maximize ���g�2
subject to g∈C+�Y ��
andA∗g�h� (4)
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From Yamasaki (1968) [17,p.344], we know that the Mackey topology  �C�X�,
M�X�� is the topology induced by the norm on C�X� defined by

�h� �=max
x∈X


h�x�
 for anyh∈C�X��

Now we define the set H as follows:

H �="�A�−�����h�1+r� � �∈M+�X���∈M+�Y �� r�0$�

A feasible solution of an optimization problem (P) is a point satisfying the con-
straints of problem (P). The set of all feasible solutions for problem (P) is called
the feasible set of problem (P). If the feasible set of problem (P) is not empty, then
we say that the problem (P) is consistent. We denote by V (P) the optimal value for
problem (P). Let F (LPM) and F (DLPM) be the feasible sets for problems LPM
and DLPM, respectively.
Note that if �∈F (LPM) and g∈F (DLPM), then

∫
X
h�x�d��x��

∫
Y
g�y�d

��y�, which entails V (LPM)�V (DLPM). First, we give a very simple condition
under which there is no duality gap for LPM. Then we show that the existence of a
Slater point for DLPM also guarantees a zero duality gap.

THEOREM 2.1. If �0, the zero measure in X, is feasible for LPM and h�x��0
for all x∈X, then V �LPM�=V �DLPM�.
Proof. Since the function zero on Y , g0, is feasible for DLPM, and

∫
X
h�x�d�0�x�

=∫
Y
g0�y�d��y�=0, we have V (LPM)=V (DLPM).

THEOREM 2.2. Suppose DLPM is consistent with finite value. If there exists a
g∗ ∈C+�Y � such that∫

Y
g∗�y���x�y�d�∗�y�<h�x� for allx∈X� (5)

then LPM is solvable and has no duality gap.
Proof. Since the set "f ∈C+�X��f �x�>0�∀x∈X$ is open in the Mackey to-

pology  �C�X��M�X��, C+�X�will have a nonempty interior in  �C�X��M�X��.
From (2.2) we know that h�·�−∫

Y
g∗�y���·�y�d�∗�y� is in  �C�X��M�X��–

interior of C+�X�, it follows that the set H is closed in ��M�Y �×R�C�Y �×R�,
and that LPM is solvable and has no duality gap, according to Corollary 3.1 in [7].

COROLLARY 2.3. Suppose that DLPM is consistent and has a finite optimal
value. If h�x�>0 or h�x�< 0 for all x∈X, then LPM is solvable and has no duality
gap.
Proof. If h�x�>0 for all x∈X, then

∫
Y
g0�y���x�y�d�∗�y�<h�x�for allx∈X�
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where, g0 is the zero function on F . Thus, according to Theorem 2.2, LPM
is solvable and V (LPM)=V (DLPM). On the other hand, if h�x�<0 for all x∈X,
then there exists a g∗ ∈C+�Y � such that

∫
Y
g∗�y���x�y�d�∗�y��h�x� for allx∈X�

since DLPM is consistent. Let c>1 and define the function g∗
1 �=cg∗, and then

we have that ∫
Y
g∗
1�y���x�y�d�∗�y�<h�x� for allx∈X�

It follows, from Theorem 2.2, that LPM is solvable and V (LPM)=V (DLPM).

EXAMPLE 2.4. Let us consider the following elements: X �=�∪"w$ is the Alex-
androff one point compactification of the discrete space � of all natural numbers,
Y �="1�2$,

��x�y� �=


�−1�y+1 1

x
if x �=w�

0 if x=w�

and h�x� �=1, ∀x∈X.

Consider ���∗ ∈M�Y � such that ��1� �=1, ��2� �=−1, �∗�y� �=1, ∀y∈Y .
Then the LPM problem becomes

LPM:minimize ��w�+
�∑
j=1

��j�

subject to ��w����j��0�∀j∈��

and
�∑
j=1

1
j
��j�=1,

whereas its dual problem is

DLPM:maximize g�1�−g�2�
subject to g�1�−g�2��j� ∀j∈�,
and g�1��0�g�2��0.

It is obvious that V (DLPM) =1, and that the optimal solutions are those g �
"1�2$→� such that g�2��0 and g�1�=1+g�2�. Since h�x�>0 for all x∈
X, V (LPM) =1 according to Corollary 2.3. Then any optimal solution of LPM,
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�∈M+�X�, must satisfy ��w�+
�∑
j=1

��j�=1 and
�∑
j=1

1
j
��j�=1. Substracting

we get �+
�∑
j=2

�1− 1
j
���j�=0, i.e., ��w�=��j�=0, j=2�3����. Thus the

unique optimal solution of LPM is the atomic measure 1 concentrated at 1.

3. Algorithms for LPM

From now on we shall assume that the given measures � and �∗ are absolutely
continuous with respect to the Lebesgue measurem, and have density functions f ∗

and g∗ respectively, since the most important Borel measures are those which are
absolutely continuous with respect to the Lebesgue measure. Then the following
Proposition 3.1 will show that the primal problem can be formulated as follows:

(P):minimize
∫
X
h�x�d��x�

subject to �∈M+�X�,
and ����y�g∗�y��f ∗�y� a.e. in Y .

If we assume in (P) that f ∗ and g∗ are continuous on Y , then the LPM problem
can be reformulated as the general capacity problem (GCAP). Since [8] and [16]
present algorithms for solving such problems, our motivation in this section is to
develop algorithms for solving the LPM problemwhen f ∗ and g∗ are discontinuous
on Y .

PROPOSITION 3.1. Let � and �∗ be defined as above. Then LPM can be refor-
mulated as �P�.
Proof. If � is a feasible solution of LPM, then

∫
B
����y�g∗�y�dm�y��

∫
B
f ∗�y�dm�y� for allB∈��Y ��

That is, ∫
B
+����y�g∗�y�−f ∗�y�,dm�y��0 for everyB∈��Y ��

Thus ����y�g∗�y��f ∗�y� a.e. in Y w.r.t. m, and � is also a feasible solution for
problem (P). Conversely, if �∗ is feasible for problem (P), then for B∈��Y �, we
have ∫

B
����y�g∗�y�dm�y��

∫
B
f ∗�y�dm�y��
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This implies that ∫
B
���∗�y�d�∗�y����B��

Since �∗ is feasible for LPM, the result follows.

Essentially, our approach extends the method introduced in [10]. First, we de-
velop a method for solving the LPM problem when the given density functions
f ∗ and g∗ are piecewise continuous with finitely many discontinuities. It is well-
known that every function of bounded variation on a closed interval can be written
as the difference of two bounded increasing functions, and every bounded increas-
ing function can be uniformly approximated by a sequence of step functions, which
are piecewise continuous with finitely many discontinuities (see Proposition 3.5).
Hence we can extend our method for solving the LPM problem with density func-
tions f ∗ and g∗ of bounded variation. Furthermore, we develop an approach for
solving the LPM with f ∗ simple measurable.

For simplicity in the remainder of this section, let X �= +a�b,, and Y �= +c�d,
with a<b and c<d. We develop algorithms for solving the LPM problem with f ∗

and g∗ satisfying at least one of the conditions below.

(I) g∗ is continuous and f ∗ is piecewise continuous with finitely many discon-
tinuities.

(II) g∗ and f ∗ are piecewise continuous with finitely many discontinuities.
(III) g∗ is continuous and f ∗ is of bounded variation.
(IV) f ∗ and g∗ satisfy the following conditions:

(a) f ∗�g∗ are of bounded variation,
(b) g∗ is bounded away from zero, that is, there exists an .>0 such that

inf
y∈Y


g∗�y�
�.,

(c) There exist compact sets K1⊆E+ �="y∈ +c�d,
∣∣g∗�y�>0$, K2⊆

E− �="y∈ +c�d,
∣∣g∗�y�<0$ such that m�E+−K1�=0 and m�E−−

K2�=
0,

(V) f ∗ and g∗ satisfy the following conditions:

(a) g∗ is continuous,
(b) f ∗ is a simple measurable function.

In case (I), we assume that g∗ is continuous and f ∗ is piecewise continuous with
finite discontinuities. Lai and Wu (1994)[10] developed an algorithm for solving
such a problem in which f ∗ is piecewise continuous with one discontinuity. For
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subsequent work, we now derive a general result for this case.

Now, we assume that g∗ is continuous and that f ∗ is continuous on Ij for
j=1�2�����n, where Ij is an interval with m�Ij�>0, Ii∩Ij=� for i �=j and
n⋃

i=1
Ii=Y . Let Ki be the compact closure of Ii, then

n⋃
i=1

Ki=Y . We assume that

f ∗�y�=




f1�y�� y∈ I1� f1∈C�I1��

���

fn�y�� y∈ In� fn∈C�In��

(6)

For convenience, we continuously extend the function fi from Ii to Ki. Then we
show that the LPM problem can be reformulated as

(P1):minimize
∫
X
h�x�d��x�

subject to �∈M+�X�, and
����y�g∗�y��f1�y�� y∈K1 ,

���
���

����y�g∗�y��fn�y�� y∈Kn .

PROPOSITION 3.2. Assume condition (I). Then the LPM problem can be refor-
mulated as problem (P1).
Proof. We have proved that the LPM problem is equivalent to problem (P)

in Proposition 3.1. Since f ∗ is defined in (3), we can reformulate problem (P) as
follows

minimize
∫
X
h�x�d��x�

subject to�∈M+�X�� and
����y�g∗�y��f1�y�� a.e. in K1

���
���

����y�g∗�y��fn�y�� a.e. in Kn�

Since ����y�g∗�y�−fi�y�, i=1�����n, are continuous functions in Ki, i=
1�����n, respectively, ����y�g∗�y�−fi�y��0, for all y∈Ki, i=1�����n.
Hence we can reformulate problem LPM as problem (P1).

Now we choose Y �1� �= "y
�1�
1 �··· �y�1�

m1
$ ⊂ K1, Y �2� �= "y

�2�
1 �··· �y�2�

m2
$ ⊂

K2����, Y �n� �="y
�n�
1 �··· �y�n�

mn
$⊂Kn, and define the semi-infinite problem SIP
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"Y �1�∪Y �2�∪···∪Y �n�$ as follows:

minimize
∫
X
h�x�d��x�

subject to�∈M+�X�� and

����y�g∗�y��f1�y�� ∀y∈Y �1��

���
���

����y�g∗�y��fn�y�� ∀y∈Y �n��

Then we have the following algorithm for the present LPM.
Algorithm (1):

Step 1: Set 2=1 and choose y�1�
1 ∈K1, y

�2�
1 ∈K2����, y

�n�
1 ∈Kn.

Let Y �1�
1 �="y

�1�
1 $, Y �2�

1 �="y
�2�
1 $����, Y �n�

1 �="y
�n�
1 $.

Step 2: Find an optimal solution �2 for SIP "Y
�1�
2 ∪Y

�2�
2 ∪···∪Y

�n�
2 $.

Step 3: For i∈"1�2�����n$, find y
�i�
2+1∈Ki such that

y
�i�
2+1= arg min

y∈Ki

"���2�y�g
∗�y�−fi�y�$ .

Step 4: For i∈"1�2�����n$, define
z�i��2

�y� �=���2�y�g
∗�y�−fi�y�� ∀y∈Ki.

If z�i��2
�y

�i�
2+1��0 for every i∈"1�2�����n$, then stop, and �2

is an optimal solution for LPM. Otherwise continue.

Step 5: Set Y �i�
2+1 �=Y

�i�
2 ∪"y

�i�
2+1$, i=1�2�����n.

(But if y�i�
2+1∈Y

�i�
2 then y

�i�
2+1 would not enter Y

�i�
2 repeatedly.)

Update 2 by 2+1 and go to Step 2.

THEOREM 3.3. Let
{
�2

}�
2=1 be a sequence of optimal solutions for the SIP prob-

lem generated by using the above procedure. If someM>0 exists such that ��2��
M for all 2, then there will be a subsequence

{
�2i

}�
i=1 of

{
�2

}�
2=1 that converges

to an optimal solution �∗ of the LPM.
Proof. Using an argument similar to that used in [10]Theorem 4.3, we can

obtain this result.

In case (II), we assume that g∗ and f ∗ are piecewise continuous with finite
discontinuities.Without loss of generality, wemay assume that there exist intervals
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I1�I2�����In such that

g∗�y�=




g1�y�� y∈ I1

���

gn�y�� y∈ In

� where gi�y�∈C�Ii� i=1�2�����n�

and

f ∗�y�=




f1�y�� y∈ I1

���

fn�y�� y∈ In

� where fi�y�∈C�Ii� i=1�2�����n�

For convenience, we continuously extend the functions fi and gi from Ii to its
closure Ki. Then the LPM problem can be reformulated as

minimize
∫
X
h�x�d��x�

subject to�∈M+�X�� and
����y�g1�y��f1�y�� y∈K1

���
���

����y�gn�y��fn�y�� y∈Kn�

In order to solve the LPMof case (II), we can use amethod similar to Algorithm (1).

In case (III), we assume that g∗ is continuous on Y , and f ∗ has bounded vari-
ation on Y . For any given function S on Y , we define the problem LPM–S by
replacing f ∗ by S in (P). Thus, the LPM–S has the following form.

LPM–S:minimize
∫
X
h�x�d��x�

subject to �∈M+�X�, and
����y�g∗�y��S�y�, a.e. in Y .

The following lemma provides a key result for subsequent work.

LEMMA 3.4. If there exists a sequence of functions
{
Sn

}�
n=1 and �∈M+�X�

such that

(i) S1�y��S2�y�� ···�f ∗�y� a.e.,
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(ii) Sn�y�→f ∗�y� uniformly a.e., as n→�, and

(iii) inf
y∈Y

����y�g∗�y�>0,

then V �LPM�= lim
n→�

V �LPM–Sn�.

Proof. Let 5�= inf
y∈Y

����y�g∗�y�. Then 5>0, according to the assumption �iii�.

Thus, 1
5
����y�g∗�y��1 for any y∈Y . Since Sn�y�→f ∗�y� uniformly a.e.

in Y , as n→�, it follows that for any .>0 there exists an N.∈� such that

SN.

�y�−f ∗�y�
�. a.e. in Y . Let �N.
∈F (LPM–SN.

) be such that
∫
X
hd�N.

<V �LPM–SN.
�+.� (7)

Then

���N.
+ .

5
��y�g∗�y� = ���N.

�y�g∗�y�+ .

5
����y�g∗�y�

� SN.
�y�+.

� f ∗�y� a.e. in Y ,

(8)

and this implies that �N.
+ .

5
�∈F (LPM). Hence

V �LPM��
∫
X
hd��N.

+ .

5
���

Since V (LPM–SN.
��V (LPM), and according to (7), we have

0 � V �LPM�−V �LPM–SN.
�

�

∫
X
hd��N.

+ .

5
��−

∫
X
hd�N.

�
.

5

∣∣∫
X
hd�

∣∣+.�

(9)

Taking .→0 in (9), it follows that V �LPM)= lim
n→�

V �LPM–Sn� .

Given an arbitrary function f ∗ on Y , we may define a truncation function Tn�f
∗�

for any n∈� as follows:

Tn�f
∗��y� �=




n� if f ∗�y��n�
k−1
10n

� if
k−1
10n

�f ∗�y�<
k

10n
�

k=0�1�2�����n·10n
−1�−2�����−n·10n+1

−n� if f ∗�y�<−n�

(10)



218 WEN AND WU

Then it will be easy to establish the following result:

PROPOSITION 3.5.

(i) If f ∗ is bounded from below with a lower bound mf ∗ , then Tn�f
∗��y� �

Tn+1�f
∗��y��f ∗�y� for all n�−mf ∗ , and Tn�f

∗��y�→f ∗�y� for all
y∈Y as n→�.

(ii) If for some M>0, 
f ∗�y�
�M for all y∈Y , then �f ∗−Tn�f
∗��� �=

sup
y∈Y


f ∗�y�−Tn�f
∗��y�
� 1

10n for all n�M . Thus, Tn�f
∗�→f ∗ uniformly on

Y as n→�.

(iii) If f ∗ is monotone, then Tn�f
∗� is a step function, for every n.

Now, if f ∗ is a bounded variation function on Y , then f ∗ can be written as a
difference of two monotone increasing functions g1 and g2. To derive an algorithm
for solving the LPM of case (III), we define T ∗

n on bounded variation function f ∗

by

T ∗
n �f

∗��y� �=Tn�g1��y�+Tn�−g2��y�� (11)

where f ∗=g1−g2 and g1�g2 are monotone increasing functions on Y . Then
according to Lemma 3.4, we have the following theorem:

THEOREM 3.6. For the LPM problem, we assume that g∗ is continuous on Y and
f ∗ is of bounded variation on Y . If there exists a �∈M+�X� such that

inf
y∈Y

����y�g∗�y�>0�

then V �LPM�= lim
n→�

V �LPM–T ∗
n �f

∗��.
Proof. Since f ∗ is of bounded variation, f ∗ is also bounded. So, according to

Proposition 3.5, there exists a N ∈� such that if n�N , then

T ∗
n �f

∗��y��T ∗
n+1�f

∗��y��f ∗�y�� and

�Tn�g1�−g1���
1
10n

� �Tn�−g2�−�−g2����
1
10n

�

where g1�g2 are monotone increasing functions such that f
∗=g1−g2. Hence,

�T ∗
n �f

∗�−f ∗����Tn�g1�−g1��+�Tn�−g2�−�−g2� 
�
�

2
10n

� for all n���

That is,
T ∗
n �f

∗�→f ∗ uniformly on Y as n→��
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Therefore, according to Lemma 3.4, V �LPM)= lim
n→�

V � LPM–T ∗
n �f

∗��.

Note that, according to Proposition 3.5–(iii), T ∗
n �f

∗� is a step function, and
therefore every LPM–T ∗

n �f
∗� is of the type described in case (I). By this property,

we derive an iterative process for solving the LPM problem of case (III). First, we
find a k∈� large enough such that T ∗

k �f
∗��y��f ∗�y�. Next we consider the

problem LPM–T ∗
k �f

∗� and assume that LPM–T ∗
k �f

∗� is solvable. Since it is of the
type described in case (I), we can solve it by using Algorithm (1). Suppose that �∗

k

is an optimal solution of LPM–T ∗
k �f

∗�. Calculate

rk �= inf
y∈Y

"���∗
k�y�g

∗�y�−f ∗�y�$� (12)

(a) If rk�0, then �∗
k will be an optimal solution to the LPM. Since �

∗
k is feasible

for the LPM,

V �LPM��
∫
X
h�x�d�∗

k�x�=V �LPM–T ∗
k �f

∗���

Thus,
V �LPM�=V �LPM–T ∗

k �f
∗��

because it is obvious that V �LPM–T ∗
k �f

∗���V �LPM��

(b) If rk<0, then there exists an Nk�k such that

inf
y∈Y

"���∗
k�y�g

∗�y�−T ∗
Nk
�f ∗��y�$�0�

but
inf
y∈Y

"���∗
k�y�g

∗�y�−T ∗
Nk+1�f

∗��y�$<0

because, otherwise, for each y∈Y

���∗
k�y�g

∗�y��T ∗
n �f

∗��y�� ∀n�k�

Let n→�, and then we have

���∗
k�y�g

∗�y��f ∗�y�� ∀y∈Y �

From (12), we have rk�0 and this contradicts the assumption that rk<0. Thus
case (b) holds. From case (b), we know that �∗

k is optimal for LPM–T
∗
Nk
�f ∗�

but not feasible for LPM–T ∗
Nk+1�f

∗�. If we update k by using Nk+1 and
continue the process, we get an iterative procedure for solving the present
LPM.

We now summarize the process described above in the following:

Algorithm (2):
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Step 1: We find k∈� and k�max"�g1����g2��$, where g1�g2
are monotone increasing functions such that f ∗=g1−g2.

Step 2: Solve the LPM–T ∗
k �f

∗�, where T ∗
k �f

∗� is defined in (3), and
obtain an optimal solution �∗

k.

Step 3: Compute
rk �= inf

y∈Y
"���∗

k�y�g
∗�y�−f ∗�y�$�

If rk�0, then stop !! And �k will be an optimal solution for
the LPM. Otherwise continue.

Step 4: Find Nk�k such that

inf
y∈Y

"���∗
k�y�g

∗�y�−T ∗
Nk
�f ∗��y�$�0

but
inf
y∈Y

"���∗
k�y�g

∗�y�−T ∗
Nk+1�f

∗��y�$<0�

Step 5: Update k by using Nk+1 and go to step 2.

In the above algorithm, we assume that every LPM–T ∗
k �f

∗� is solvable.

Theorem 3.6 shows that V (LPM) can be approximated by using V (LPM–
T ∗
n �f

∗�). The following theorem provides an error bound for this approximation.

THEOREM 3.7. Suppose there exists a �∈M+�X� such that

8�= inf
y∈Y

����y�g∗�y�>0�

(i) If
∫
X
h�x�d��x�< 0, then V �LPM�=−�.

(ii) If
∫
X
h�x�d��x��0, then

0�V �LPM�−V �LPM–T ∗
n �f

∗���
1
8
· 2
10n

∫
X
h�x�d��x�

for all n�max"�g1����g2��$, where g1 and g2 are monotone increasing
functions such that f ∗=g1−g2.

Proof.
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(i) Since 8�= inf
y∈Y

����y�g∗�y�>0� we can take k∈� such that k8>sup
y∈Y

f ∗�y�,

it follows that k�∈ F (LPM). Hence

V �LPM��k
∫
X
h�x�d��x��

Let k→�, and we have that V �LPM�=−�.

(ii) If n�max"�g1����g2��$, then, by repeating the argument of Theorem 3.6,
we have

T ∗
n �f

∗��y� �=Tn�g1��y�+Tn�−g2��y��g1�y�−g2�y�=f ∗�y��
(13)

for each y in Y �

and

�T ∗
n �f

∗�−f ∗����Tn�g1�−g1��+�Tn�−g2�−�−g2���
�

2
10n

�

Hence T ∗
n �f

∗��y�+ 2
10n �f ∗�y� for each y in Y . Then, for each �∈

F�LPM–T ∗
n �f

∗��, we have

���+ 2
10n8

��y�g∗�y��T ∗
n �f

∗��y�+ 2
10n

a.e. in Y

�f ∗�y� a.e. in Y �

That is, �+ 2
10n8�∈F�LPM�. Therefore, for every �∈F�LPM–T ∗

n �f
∗��,

V �LPM��
∫
X
h�x�d��x�+ 2

10n8

∫
X
h�x�d��x��

This implies

V �LPM�−V �LPM–T ∗
n �f

∗���
2

10n8

∫
X
h�x�d��x��

for n � max"�g1����g2��$. Since, according to (3), T ∗
n �f

∗� � f ∗, it
follows that

V �LPM–T ∗
n �f

∗���V �LPM��

Thus,

0�V �LPM�−V �LPM–T ∗
n �f

∗���
2

10n8

∫
X
h�x�d��x��



222 WEN AND WU

Next, we consider LPM of case (IV). It is obvious that LPM can be rewritten in
the following form:

minimize
∫
X
h�x�d��x�

subject to�∈M+�X�� and

����y��
f ∗

g∗ �y� a.e. in K1�

−����y��−f ∗

g∗ �y� a.e . in K2�

Since f ∗ and g∗ are of bounded variation and g∗ is bounded away from zero, it

follows that
f ∗

g∗ is of bounded variation.

Let
f ∗

g∗ �=h1−h2, where h1�h2 are monotone increasing on +c�d,. As in (10)

and (11), we define

T ∗
n �

f ∗

g∗ � �=Tn�h1�+Tn�−h2��

and

T ∗
n �−

f ∗

g∗ � �=Tn�h2�+Tn�−h1�� ∀n∈��

To solve LPM in case (IV), we define the subprogram LPM–T ∗
n �

f ∗
g∗ �∪T ∗

n �− f ∗
g∗ �

for n∈� as follows:

minimize
∫
X
h�x�d��x�

subject to�∈M+�X�� and

����y��T ∗
n �

f ∗

g∗ ��y� a.e. in K1�

−����y��T ∗
n �−

f ∗

g∗ ��y� a.e. in K2�

The following theorem shows that V �LPM� can be approximated by using V
(LPM–T ∗

n �
f ∗
g∗ �∪T ∗

n �− f ∗
g∗ ��. Note that we can solve every subprogram

LPM–T ∗
n �

f ∗
g∗ �∪T ∗

n �− f ∗
g∗ � by using Algorithm (1).
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THEOREM 3.8. Suppose that there exists �∗ ∈M+�X� such that ���∗�y�g∗�y��
1 a.e. in Y �

(i) If
∫
X
h�x�d�∗�x�<0, then V �LPM�=−�.

(ii) If
∫
X
h�x�d�∗�x��0, then

V �LPM–T ∗
n �

f ∗

g∗ �∪T ∗
n �−

f ∗

g∗ ��

�V �LPM��V �LPM–T ∗
n �

f ∗

g∗ �∪T ∗
n �−

f ∗

g∗ ��+
2k
10n

∫
X
h�x�d�∗�x�

for all n�max"�h1����h2��$, and k �=sup
y∈Y


g∗�y�
.
Proof.

(i) It follows, by using an argument similar to that we used to prove Theorem 3.7–
(i).

(ii) Since ���∗�y�g∗�y��1 a.e. in Y , and 0< 
g∗�y�
�k ∀y∈Y , it follows that

���∗�y��
1

g∗�y�
�
1
k

a.e. in K1� (14)

and

−���∗�y��
−1

g∗�y�
�
1
k

a.e. in K2� (15)

Thus, if n�max"�h1����h2��$, and according to Proposition 3.5, we have
that

T ∗
n �

f ∗

g∗ ��y� �= Tn�h1��y�+Tn�−h2��y�

� �h1−h2��y�=
f ∗

g∗ �y�� (16)

T ∗
n �−

f ∗

g∗ ��y� �= Tn�h2��y�+Tn�−h1��y�

� �h2−h1��y�=−f ∗

g∗ �y�� (17)

and
∥∥T ∗

n �
f ∗

g∗ �−
f ∗

g∗
∥∥
� � �Tn�h1�−h1��+�Tn�−h2�−�−h2��� (18)

�
1

10n
+ 1
10n

= 2
10n

�
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Likewise,
∥∥T ∗

n �−
f ∗

g∗ �−�−f ∗

g∗ �
∥∥
��

2
10n

� (19)

Therefore, if �∈F�LPM–T ∗
n �

f ∗
g∗ �∪T ∗

n �− f ∗
g∗ ��, and for y∈K1,

���+ 2k

10n
�∗�y�

�T ∗
n �

f ∗

g∗ ��y�+
2k
10n

���∗�y� a .e. in K1

�T ∗
n �

f ∗

g∗ ��y�+
2
10n

a.e. in K1 (by (14))

�T ∗
n �

f ∗

g∗ ��y�+
f ∗

g∗ �y�−T ∗
n �

f ∗

g∗ ��y� a.e. in K1 (from (19))

= f ∗

g∗ �y�� a.e. in K1

and, for y∈K2,

−���+ 2k
10n

�∗�y�=−����y�+ 2k
10n

�−���∗�y�� a.e. in K2

�T ∗
n �−

f ∗

g∗ ��y�+
2
10n

a.e. in K2 (by (15))

�−f ∗

g∗ �y�� a.e. in K2 (from (19)),

which implies that �+ 2k
10n �

∗ ∈F�LPM�. Thus,

V �LPM��V �LPM–T ∗
n �

f ∗

g∗ �∪T ∗
n �−

f ∗

g∗ ��+
2k
10n

∫
X
h�x�d�∗�x��

From (16) and (17), we have that

F�LPM�⊆F�LPM–T ∗
n �

f ∗

g∗ �∪T ∗
n �−

f ∗

g∗ ���∀n�max"�h1����h2��$�

which leads to

V �LPM–T ∗
n �

f ∗

g∗ �∪T ∗
n �−

f ∗

g∗ ���V �LPM��

Consider LPM in case (V), in which f ∗ and g∗ satisfy the following conditions:
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(i) g∗ is continuous on Y ;

(ii) f ∗ �= 2∑
i=1

ai9Ei
, where Ei is a measurable set; i�e�, f

∗ is a simple function on

Y .

For n∈�, by the regularity of Lebesgue measure (see [13]), we consider the
compact sets K

�n�
i ⊆ Ei, ∀i ∈ "1�2�����2$, with

2∑
i=1

m�Ei−K
�n�
i � �

1
n
and

K
�n�
i ⊆K

�n+1�
i . As in the previous cases, we define a subprogram LPM–Vn�f

∗� as
follows:

minimize
∫
X
h�x�d��x�

subject to�∈M+�X��

����y�g∗�y��ai a.e. in K
�n�
i � i=1�2�����2�

Every LPM–Vn�f
∗� is of the type described in case (I). Let us introduce a condition

for ��x�y�:

Condition �∗�: If
{
�n

}�
n=1, �∈M+�X� and �n→� weakly, then

max
y∈Y


���n−��y�
→0� asn→��

Note that if � is separable, that is, ��x�y� �= k∑
i=1

fi�x�gi�y�, where fi�x�∈C�X�

and gi�y�∈C�Y �, then � satisfies the condition �∗�. The following theorem shows
that under certain conditions, V �LPM� can be approximated by V �LPM–Vn�f

∗��.

THEOREM 3.9. Let �n be an optimal solution for LPM– Vn�f
∗�, n∈�. If there

exist N ∈� and k∈� such that ��n��k for all n�N , and ��x�y� satisfies the
condition �∗�, then lim

n→�
V �LPM–Vn�f

∗��=V �LPM�.

Proof. Since ∀i∈"1�2�����2$ and n∈�, K
�n�
i ⊆K

�n+1�
i ⊆Ei, F�LPM–

V1�f
∗��⊇F�LPM–V2�f

∗��⊇···⊇F�LPM�. So

V �LPM–V1�f
∗���V �LPM–V2�f

∗��� ···�V �LPM��

Let lim
n→�

V �LPM–Vn�f
∗��=;. Hence ;�V �LPM�. Since C�X� is separable,

and by the Banach-Alaoglu Theorem and Theorem 3.16 in [14], the set "�∈
M�X������k$ is sequentially compact. Hence, by the assumption that ��n��
k, for all n�N , there exists a subsequence

{
�nj

}�
j=1⊆

{
�n

}�
n=1 and �∗ ∈M+�X�



226 WEN AND WU

such that �nj
→�∗ weakly. Therefore,



∫
X
hd�∗−;
� 


∫
X
hd�∗−

∫
X
hd�nj


+

∫
X
hd�nj

−;
→0� as j→��

This implies that
∫
X
hd�∗=;�V �LPM�� (20)

We claim that �∗ ∈F�LPM–Vn�f
∗�� for every n∈�. Otherwise, there exists a

n∗ ∈� such that �∗ �∈F�LPM–Vn∗�f
∗��, entailing the existence of a set S⊆K

�n∗�
i∗

for some i∗ ∈"1�2�����2$ withm�S� �=0 such that

���∗�y�g∗�y�<ai∗� ∀y∈S�

Since ��x�y� satisfies condition �∗� and �nj
−→�∗ weakly, together with the

continuity of g∗,

max
y∈Y


���nj
−�∗�y�g∗�y�
→0� as j→��

Hence, there exists a sufficiently large N with N >n∗ such that

���N �y�g
∗�y�<ai∗� ∀y∈S� (21)

Since N >n∗, �N ∈F�LPM–Vn∗�f
∗��, which implies that

���N �y�g
∗�y��ai∗ a.e. in K

�n∗�
i∗ �

Therefore,

���N �y�g
∗�y��ai∗ y∈S a.e.

But this contradicts (3), and so, the claim must be true. Thus, �∗ ∈F (LPM–
Vn�f

∗�� for every n∈�. Now, using this claim we will show that �∗ ∈F�LPM�.
Suppose that this is not the case. Then there must exist a set S ′ ⊆Ei for some
i∈"1�2�����2$ withm�S ′� �=0 such that

���∗�y�g∗�y�<ai ∀y∈S ′� (22)

Since m�Ei−
⋃�

n=1K
�n�

i
�=0 and m�S ′� �=0, there exists K

�n0�

i
for some n0∈�

such that m�K
�n0�

i
∩S ′� �=0. According to the claim, �∗ ∈F�LPM–Vn0

�f ∗��.
Hence ���∗�y�g∗�y��ai for y∈K

�n0�

i
a.e., which contradicts (3). Therefore,

�∗ ∈F�LPM� and V �LPM�=;= lim
n→�

V �LPM–Vn�f
∗�� from (3).
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4. Numerical examples

In this section, we use three examples to illustrate the proposed algorithms and
solution procedures. Throughout these examples, we let X=Y = +0�1,, and let m
and 5x be the Lebesgue measure and the unit mass concentrated at x, respectively.

EXAMPLE 4.1. Consider the LPM with h�x� �=1�5−x, ��x�y� �=cos�2<xy�,
and �∗�� absolutely continuous with respect to m, having the density functions

g∗�y� �=1� ∀y∈Y �

f ∗�y� �=
�∑

n=1

1
10n−1

9+ 12n �
1

2n−1 ,
�y�� ∀y∈Y � respectively�

It is clear that g∗ is continuous on Y . As f ∗ is monotone increasing, it is of bounded
variation on Y , and we write f ∗=g1−g2, where g1=f ∗ and g2=0. So, by (3),

T ∗
n �f

∗��y�=
n+1∑
2=1

1
102−1

9+ 122 �
1

22−1 ,
�y�� y∈Y �

As 50, the unit mass concentrated at 0, is such that

inf
y∈Y

"��50�y�g
∗�y�$= inf

y∈Y
"
∫
X
��x�y�d50�x�g

∗�y�$=1>0�

the optimal value of LPM can be approximated by the optimal value of LPM–
T ∗
n �f

∗�, which is defined in Section 3, by applying Theorem 3.6.

Reformulate LPM as follows:

minimize
∫
X
�1�5−x�d��x�

subject to�∈M+�X�� and

and
∫
X
cos�2<xy�d��x��

�∑
n=1

1
10n−1

9+ 12n �
1

2n−1 ,
� a.e. inY �

As it is of the type (III) of LPM as it was introduced in Section 3, we shall solve
it by Algorithm (2). Since max"�g1����g2��$=1 , we first consider the subprob-
lem LPM–T ∗

1 �f
∗� which is of type (II), also introduced in Section 3, and is defined
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as follows:

LPM–T ∗
1 �f

∗� � minimize
∫
X
�1�5−x�d��x�

subject to�∈M+�X�� and

and
∫
X
cos�2<xy�d��x��

2∑
2=1

1
102−1

9+ 122 �
1

22−1 ,
�y��∀y∈Y �

Now, we solve LPM–T ∗
1 �f

∗� by Algorithm (1). Let

K1 �= +
1
2
�1,� K2 �= +

1
3
�
1
2
,� K3 �= +

1
4
�
1
3
,� K4 �= +0�

1
4
,�

and define

f ∗
1 �y� �=1� ∀y∈K1�

f ∗
2 �y� �=0� ∀y∈K2�

f ∗
3 �y� �=0�1� ∀y∈K3�

f ∗
4 �y� �=0� ∀y∈K4�

Then LPM–T ∗
1 �f

∗� can be rewritten as follows:

minimize
∫
X
�1�5−x�d��x�

subject to�∈M+�X�� and

and
∫
X
cos�2<xy�d��x��f ∗

i �y� ∀y∈Ki� i=1�2�3�4�

As in Algorithm (1), we let, for i=1�2�3�4,

Z
�i�

�∗
2
�y� �=���∗

2�y�g
∗�y�−f ∗

i �y�� ∀y∈Ki�

and,

y
�i�
2+1=argmin

y∈Ki

Z
�i�

�∗
2
�y��

The progress of the Algorithm (1) for solving LPM–T ∗
1 �f

∗� is summarized in
Table 1.
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Table 1.

min
y∈K1

Z
�1�
�∗2

min
y∈K2

Z
�2�
�∗2

min
y∈K3

Z
�3�
�∗2

min
y∈K4

Z
�4�
�∗2

2 Yl
1O�S��2�

y
�1�
2+1 y

�2�
2+1 y

�3�
2+1 y

�4�
2+1

−0�00041 1 0�903338 1�005751

1 "y
�1�
0 �y

�1�
1 $ 3�∗

1

0�582382 – – – – – –
−0�000002 1�000423 0�903530 1�005748

2 "y
�1�
0 �y

�1�
1 �y

�1�
2 $ 4�∗

2
0�589055 – – – – – –

0 1�000426 0�903542 1�005766
3 2"y

�1�
0 �y

�1�
1 �y

�1�
2 �y

�1�
3 $ 5�∗

3

– – – – – – – –

1 O�S��2� denotes an optimal solution for SIP"Y2$.
2 y

�1�
0 =1, y�1�1 =0�5, y�1�2 =0�582382, y�1�3 =0�589055.

3 �∗
1=

2∑
i=1

?
�1�
i 5

x
�1�
i

, where ?
�1�
1 =1�006391, ?�1�

2 =0�003832, x�1�
1 =0�022705, x�1�

2 =1.

4 �∗
2=

2∑
i=1

?
�2�
i 5

x
�2�
i

, where ?
�2�
1 =1�006365, ?�2�

2 =0�003478, x�2�
1 =0�022278, x�2�

2 =1.

5 �∗
3=

2∑
i=1

?
�3�
i 5

x
�3�
i

, where ?
�3�
1 =1�006383, ?�3�

2 =0�003487, x�3�
1 =0�022308, x�3�

2 =1.

From Table 1, we see that �∗
3=

2∑
i=1

?
�3�
i 5

x
�1�
i
is feasible and hence is also the optimal

solution of LPM–T ∗
1 �f

∗�.

It is obvious that F (LPM)⊂F (LPM–T ∗
1 �f

∗�) and �∗
3∈F (LPM), since

inf
y∈Y

"���∗
3�y�g

∗�y�−f ∗�y�$=0�

(“0” implies an accuration within six decimal points.) Therefore �∗
3 is an optimal

solution, and the optimal value is

V (LPM)=
∫
X
�1�5−x�d�∗

3�x�=1�488868�

EXAMPLE 4.2. Consider the LPM with h�x� �=1�5−x, ��x�y� �=cos�2<xy�,
and �∗�� absolutely continuous with respect to m, having the density functions

g∗�y� �=1� ∀y∈Y �

f ∗�y� �=
�∑

n=1
�2− 1

10n−1
�9+ 12n �

1
2n−1 ,

�y�� ∀y∈Y � respectively.



230 WEN AND WU

That is, LPM is of the form below:

minimize
∫
X
�1�5−x�d��x�

subject to�∈M+�X�� and

and
∫
X
cos�2<xy�d��x��

�∑
n=1

�2− 1
10n−1

�9+ 12n �
1

2n−1 ,
�y�� a.e. inY �

As f ∗ is of bounded variation on Y and other data of this problem are the same as
Example 4.1, we also find an optimal solution for LPM by virtue of the subprob-
lems LPM–T ∗

k �f
∗�. Since f ∗ is monotone decreasing, we let f ∗=g1−g2, where

g1=0 and g2=−f ∗, and we take k=2 in Algorithm (2) owing to max"�g1��,
�g1��$=2. As in Algorithms (2), we let

rk �= inf
y∈Y

"���∗
k�y�g

∗�y�−f ∗�y�$�

and let Nk∈N be such that Nk�k, inf
y∈Y

+���∗
k�y�g

∗�y�−T ∗
Nk
�f ∗��y�,�0, but

inf
y∈Y

+���∗
k�y�g

∗�y�−T ∗
Nk+1�f

∗��y�,<0. The progress of Algorithm (2) is summar-

ized in Table 2.

Table 2.

k 1O�S��k� 2V �k� rk Nk

2 3�∗
2 2�695959 −0�011195 2

3 4�∗
3 2�709825 0 – –

1 O�S��k� denotes an optimal solution for LPM–T ∗
k �f

∗�.
2 V �k� denotes the optimal value for LPM–T ∗

k �f
∗�.

3 �∗
2=

2∑
i=1

?
�2�
i 5

x
�2�
i
, where ?

�2�
1 =1�836696, ?

�2�
2 =0�186896, x

�2�
1 =0�167725,

x
�2�
2 =0�167847.

4 �∗
3=

3∑
i=1

?
�3�
i 5

x
�3�
i
, where ?

�3�
1 =1�743671, ?

�3�
2 =0�285351, ?

�3�
3 =0�014068,

x
�3�
1 =0�168823, x�3�

2 =0�168945, x�3�
3 =0�869263.

Since r3=0, by Algorithm (2) �∗
3=

3∑
i=1

?
�3�
i 5

x
�3�
i
is an optimal solution, and the

optimal value is 2.709825.
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EXAMPLE 4.3. Consider the LPM with h�x� �=1�5−x, ��x�y� �=cos�2<xy�,
and �∗�� absolutely continuous with respect to m. �∗ and � have density functions

g∗�y� �=e�y−1�� ∀y∈Y �

f ∗�y� �=
�∑

n=1
�2− 1

10n−1
�9+ 12n �

1
2n−1 ,

�y�� ∀y∈Y � respectively.

That is, LPM is of the form below:

minimize
∫
X
�1�5−x�d��x�

subject to�∈M+�X�� and

and e�y−1�
∫
X
cos�2<xy�d��x��

�∑
n=1

�2− 1
10n−1

�9+ 12n �
1

2n−1 ,
�y�� a.e. inY �

As in the examples above, we can solve this problem by Algorithm (2), since

inf
y∈Y

"e�y−1�
∫
X
cos�2<xy�d50�x�$=

1
e
>0�

Also we let k=2 in the first step of Algorithm (2). The progress of Algorithm (2)
is summarized in Table 3, where the same notation appears in Table 2.

Table 3.
k O�S��k� V �k� rk Nk

2 1�∗
2 6�057516 −10−1 2

3 2�∗
3 6�236674 −10−2 3

4 3�∗
4 6�254605 −10−3 4

5 4�∗
5 6�256398 −10−4 5

6 5�∗
6 6�256577 −10−5 6

7 6�∗
7 6�256595 −10−6 7

1 �∗
2=

3∑
i=1

?
�2�
i 5

x
�2�
i
, where ?�2�

1 =1�859129, x�2�
1 =0�236328,

?
�2�
2 =2�635647, x�2�

2 =0�23645, ?�2�
3 =0�669959, x�2�

3 =0�935913.
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2 �∗
3=

3∑
i=1

?
�3�
i 5

x
�3�
i
, where ?�3�

1 =1�858127, x�3�
1 =0�241211,

?
�3�
2 =2�727346, x�3�

2 =0�241699, ?�3�
3 =0�823908, x�3�

3 =0�934570.
3 �∗

4=
3∑

i=1
?
�4�
i 5

x
�4�
i
, where ?�4�

1 =2�786746, x�4�
1 =0�241943,

?
�4�
2 =1�807445, x�4�

2 =0�242065, ?�4�
3 =0�839655, x�4�

3 =0�934204.
4 �∗

5=
3∑

i=1
?
�5�
i 5

x
�5�
i
, where ?�5�

1 =0�905336, x�5�
1 =0�241943,

?
�5�
2 =3�689778, x�5�

2 =0�242065, ?�5�
3 =0�841178, x�5�

3 =0�934204.
5 �∗

6=
3∑

i=1
?
�6�
i 5

x
�6�
i
, where ?�6�

1 =0�717194, x�6�
1 =0�241943,

?
�6�
2 =3�878012, x�6�

2 =0�242065, ?�6�
3 =0�841330, x�6�

3 =0�934204.
6 �∗

7=
3∑

i=1
?
�7�
i 5

x
�7�
i
, where ?�7�

1 =0�698380, x�7�
1 =0�241943,

?
�7�
2 =3�896835, x�7�

2 =0�242065, ?�7�
3 =0�841346, x�7�

3 =0�934204.

Since r7<0, �∗
7 is not feasible for LPM and hence it is not an optimal solution.

However, by the same argument as Theorem 3.7, we have

0�V �LPM�−V �LPM–T ∗
7 �f

∗��

�

sup
y∈Y

"f ∗�y�−T ∗
7 �f

∗��y�$

inf
y∈Y

��50�y�g
∗�y�

∫
X
�
3
2
−x�d50�x�

= 3

2
e ·10−6�

Hence, the approximate value V �7�=6�256595 is correct to five decimal places.
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